On the optimality of some multi-point methods for finding multiple roots of nonlinear equation
نویسندگان
چکیده
This paper deals with the problem of determining the multiple roots of nonlinear equations, where the multiplicity of the roots is known. The paper contains some remarks on the optimality of the recently published methods [B. Liu, X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations, Nonlinear Anal. Model. Control, 18(2):143–152, 2013] and [X. Zhou, X. Chen, Y. Song, Families of thirdand fourth-order methods for multiple roots of nonlinear equations, Appl. Math. Comput., 219(11):6030–6038, 2013]. Separate analysis of odd and even multiplicity, has shown the cases where those methods lose their optimal convergence properties. Numerical experiments are made and they support theoretical analysis.
منابع مشابه
THIRD-ORDER AND FOURTH-ORDER ITERATIVE METHODS FREE FROM SECOND DERIVATIVE FOR FINDING MULTIPLE ROOTS OF NONLINEAR EQUATIONS
In this paper, we present two new families of third-order and fourth-order methods for finding multiple roots of nonlinear equations. Each of them requires one evaluation of the function and two of its first derivative per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
متن کاملA Family of Iterative Methods for Simultaneous Computing of All Zeros of Algebraic Equation
This study deals with a family of multi-point iterative methods of arbitrary order of convergence for simultaneous computing of all roots of an algebraic equation. These methods are analogues of the well known method for computing of a single root of a nonlinear equation. Some known methods for simultaneous finding of all roots of algebraic equations are special cases of the family considered. ...
متن کاملApplication of Collocation Method in Finding Roots
In this paper we present a new method to find simple or multiple roots of functions in a finite interval. In this method using bisection method we can find an interval such that this function is one to one on it, thus we can transform problem of finding roots in this interval into an ordinary differential equation with boundary conditions. By solving this equation using collocation method we ca...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملNonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings
In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...
متن کامل